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The spatiotemporal evolution of Poiseuille-Rayleigh-Bénard flows in binary fluids with Soret effect is
investigated by carrying out fully nonlinear two-dimensional numerical simulations initiated by a pulselike
disturbance. The traveling wave packets for positive as well as negative separation factors ¢ are obtained
numerically for ethanol-water-like mixtures (Prandtl number Pr=10, Lewis number Le=0.01) and selected
combinations of Rayleigh and Reynolds numbers at /=0.01, 0.1 and ¢=-0.1. The characteristics of the wave
fronts and the transitions observed between absolute and convective instabilities when changing the parameters
are compared with the results previously obtained by linear spatiotemporal stability analysis. The simulations
are in very good agreement with the stability results, which confirms the validity of both approaches. Finally,
in order to characterize the possible interaction between the two wave packets of the so-called downstream and
upstream modes for <0, the spatiotemporal stability analysis is used to detect a boundary curve in the (Re,
Ra) parameter region beyond which the two wave packets will never completely separate. Numerical simula-

tions illustrate the different evolutions of the wave packets on both sides of this boundary.
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I. INTRODUCTION

Mixed convection in binary mixtures with Soret effect has
many practical applications, such as chemical vapor deposi-
tion (CVD) in the electronics industry. It also leads to a
variety of spatiotemporal patterns, the study of which has a
great theoretical interest. In fact, the spatiotemporal behavior
of the dissipative structures appearing in binary mixture con-
vection [1] is already complex due to the combination of
thermal forcing (characterized by the Rayleigh number Ra)
and Soret coupling between temperature and concentration
fields (characterized by the separation factor ), and the ex-
ternally imposed throughflow will add a new influence.

Jung et al. [2] were the first to investigate how a horizon-
tal plane Poiseuille shear flow changes linear convection
properties in binary fluid layers heated from below. They
solved the full linear stability equations by a shooting
method for realistic top and bottom boundary conditions. For
negative Soret coupling, they elucidated the throughflow lift-
ing of the Hopf symmetry degeneracy of left and right trav-
eling waves (TW). They also showed how the frequencies,
bifurcation thresholds, and structural properties of the two
TW solution branches—as well as the stationary overturning
convection (SOC)—were dramatically changed when a
throughflow was applied. Later, Biichel, and Liicke [3] in-
vestigated the effect of a horizontal Poiseuille throughflow
on stationary and traveling wave convective patterns which
appear for negative Soret coupling. The numerical calcula-
tions in a two-dimensional periodic box containing two
counterrotating near-critical transverse rolls are performed
with a Galerkin expansion or a finite-difference numerical
method. Bifurcation diagrams of various quantities such as

*Corresponding author: hu_jun@iapcm.ac.cn

1539-3755/2009/80(2)/026312(14)

026312-1

PACS number(s): 47.20.Bp, 47.60.Dx

Nusselt number, frequency, and mixing behavior are deter-
mined as functions of heating rate and wave number for sev-
eral throughflow rates and Soret coupling strengths for
ethanol-water parameters. They also studied the growth dy-
namics of small convective perturbations into different,
strongly nonlinear convective states and the transition be-
tween them. Concerning the characterization of the absolute
or convective nature of the instabilities in such flows, the
boundary curves separating these two types of instabilities
for both negative separation factors (corresponding to the
two TW solutions) and positive separation factors (corre-
sponding to the SOC solution) are first plotted as a function
of the throughflow rate in the paper of Jung er al. [2] Biichel
and Liicke [4] then studied the linear spatiotemporal proper-
ties of spatially localized convective perturbations for heated
binary fluid layers, with or without throughflow. Fronts and
pulselike wave packets formed out of the three relevant per-
turbations (two oscillatory ones and a stationary one) are
analyzed after evaluating the appropriate saddle points of the
three respective dispersion relations of the linear stability
equations over the complex wave number plane. Some com-
parisons with pulses and fronts obtained by numerical simu-
lation are also given. Finally, Jung and Liicke [5] investi-
gated the nonlinear evolution of traveling wave fronts and
localized traveling wave convection in binary fluid mixtures
with strongly negative Soret coupling. They used numerical
simulations performed in two-dimensional long-extent cavi-
ties to point out and elucidate the differences in the evolu-
tions of fronts and localized waves.

By using the Chebyshev collocation method to solve the
full linear stability equations, Hu et al. [6] further investi-
gated the temporal and spatiotemporal instabilities of the
Poiseuille-Rayleigh-Bénard flows for much larger Reynolds
numbers. For positive separation factors, they found that the
critical thresholds strongly increase when the throughflow is
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FIG. 1. Schematic of the Poiseuille-Rayleigh-Bénard model.

applied, and the boundary curves between absolute and con-
vective instabilities (AI/CI) increase as well, but more
steeply. For enough large positive separation factors, there
exist three local minima in the neutral curves (Rayleigh num-
ber against wave number) for moderate Reynolds numbers,
which results in the discontinuity of the critical wave number
curve and the nonsmoothness of the critical Rayleigh number
curve when the Reynolds number is varied. For negative
separation factors, there exists a contact point between the
critical Rayleigh number curve and the AI/CI boundary
curve at which the fluid system makes a direct transition
from stable to absolutely unstable without crossing the con-
vectively unstable region.

In this paper, the spatiotemporal evolution of Poiseuille-
Rayleigh-Bénard flows is numerically investigated in a long-
extent two-dimensional cavity by introducing a pulselike ini-
tial velocity perturbation. The numerical simulations are
chosen to illustrate and analyze specific behaviors revealed
by the linear spatiotemporal stability analysis. Our two-
dimensional analysis implies that we consider convection
rolls with axes oriented transversally, i.e., perpendicular to
the throughflow direction. Such flow structures are those ob-
tained in channels that are narrow in the transverse direction,
and our two-dimensional approximation, although it does not
take into account the variations in the transverse direction,
can efficiently describe these structures. Other flow struc-
tures, as longitudinal rolls with axes oriented parallel to the
flow, which can be obtained in wider channels, will have
different bifurcation thresholds and different behaviors, but
they cannot be described by our two-dimensional model. The
paper is organized as follows. The formulation of the prob-
lem is given in Sec. II, and the mixed finite element method
adopted for the numerical simulations is presented in Sec.
III. In Sec. 1V, the spatiotemporal simulations of Poiseuille-
Rayleigh-Bénard flows for positive and negative separation
factors are presented and analyzed, and we present our con-
clusion in Sec. V.

II. FORMULATION OF THE PROBLEM

We consider a nonreactive binary fluid mixture contained
in a two-dimensional horizontal channel of height H (Fig. 1).
The binary mixture is heated from below: the horizontal
boundaries are isothermal and held at different temperatures,
T, at the top wall (z=H) and T,>T, at the bottom wall (z
=0). A throughflow is also generated in the x direction by
imposing a constant pressure gradient along the channel. The
resulting global flow is usually called the Poiseuille-
Rayleigh-Bénard flow.
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Due to the influence of gravity, the binary mixture may
become unstable when vertical temperature and concentra-
tion gradients exist. To take this into account, the density
variations are considered, but according to the Boussinesq
approximation, they are restricted to the buoyancy term and
are expressed as a linear law,

p=poll = BT ~Ty) — Bc(C - Cy)], (1)

where Br and S, are the thermal and solutal expansion co-
efficients; p,, T, and C, are reference values for density,
temperature, and concentration, respectively, which are taken
as the mean initial values of the respective fields.

The Soret effect, which arises as the contribution of the
temperature gradient to the mass flux, is considered here,
whereas the Dufour effect, which arises as the contribution
of the concentration gradient to the heat flux, is neglected.
This assumption is valid for liquid mixtures. The mass flux
Jc and the heat flux J; are then

Je==pDcV C—pyDsV T, (2a)

JT=—DTV T, (2b)

where D, Dg, and Dy are the solutal diffusion coefficient,
Soret diffusion coefficient, and thermal conductivity, respec-
tively. The conductive steady state will then correspond to
linear variations along the vertical z direction for both the
temperature and the concentration, leading to a concentration
difference AC=—DAT/D induced by the applied tempera-
ture difference AT=T,-T,.

The flow in this system is modeled by the Navier-Stokes
equations coupled to an energy equation and a concentration
equation. In these equations, length, velocity, time, and pres-
sure are scaled by H, k/H, H*/ k, and py«’/H?, respectively
(k is the thermal diffusivity). The dimensionless temperature
0 and concentration ¢ are defined as (T-T,)/AT and (C
—Cpy)/AC. Thus the dimensionless governing equations of
the two-dimensional Poiseuille-Rayleigh-Bénard flow are

V.v=0, (3a)
av 5
a—t+v -Vv==Vp+PrV°v+RaPr(6+ yc)e,, (3b)
a0
— +v-VO=V?9, (3¢)
Jt
dc 2 2
—+v-Ve=Le(Vc-V-0), (3d)

ot

where v=(u,w) is the two-dimensional dimensionless veloc-
ity vector, e, is the unit vector in the vertical direction, and
the operators are defined as V=(d,,d.) and V>=3>+". The
dimensionless parameters appearing in the governing system
[Eq. (3)] are the Prandtl number, Pr=v/ k, the Rayleigh num-
ber, Ra=pB;gH’AT/kv, the separation factor, =
—BcDs/ BrD¢, and the Lewis number, Le=D./ k. Here, v is
the kinematic viscosity. The corresponding boundary condi-
tions are
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no-slip conditions: u=w=0, at z=0,1, (4a)
thermal conditions: 6#=0.5, at z=0, (4b)
6=-0.5, at z=1, (4c¢)

mass impermeability: d.0-d.c=0, at z=0,1. (4d)

The nondimensional basic steady state can easily be ob-
tained and corresponds to a parabolic z profile for the x com-
ponent of the velocity vector (throughflow), to linear conduc-
tive z profiles for temperature and concentration, and to a
pressure gradient which is constant in the throughflow direc-
tion and linear in z in the vertical direction (gravitational
effects):

i(z) =— 6 Re Pr(z> - 2), (5a)
Vp=-12 Re Pr’e, + Ra Pr(1 + ¢)(0.5-z)e..  (5b)
0(z)=0.5-z, (5¢)

c(z)=0.5-z. (5d)

Here, Re=UyH/v is the Reynolds number, and U, is the
dimensional mean velocity obtained by integration over the
channel width.

The disturbed two-dimensional Poiseuille-Rayleigh-
Bénard flow with Soret effect can be decomposed as u=u
+u', w=w', p=p+p’, #=6+0', and c=c+c’. The perturba-
tion equations are then represented as

V-v' =0, (6a)
ou’ ou'  du !
v Vi i 2 o v (6b)
ot ox dz ox

aw'’ _ow'’ ap’ )
— 4V -Vw' +u—==—+PrV°w’ +Ra Pr(6' + yc’),
ot ox a9z
(6¢)
a6 a6
—+Vv VO +u—-w'=V?0, (6d)
ot ox
dc’ ac’
—+v' V' +i— —w' =Le(V3c' = V?0'). (6e)
ot ox

Here, v'=(u’,w’). The corresponding boundary conditions
are

no-slip conditions: u'=w’=0, at z=0,1, (7a)
thermal conditions: 6 =0, at z=0,1, (7b)
mass impermeability: 9.0 —d.c'=0, at z=0,1. (7c)

It is these perturbation equations which we will solve in the
two-dimensional channel. In the numerical simulations, the
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channel will be long, but of finite length L, in the x direction
and we will impose periodic boundary conditions in this di-
rection for all the perturbation variables.

II1. MIXED FINITE ELEMENT METHOD

A quadrilateral mesh is used for the computations and the
variables in each element are expanded in Galerkin basis
functions,

9 9 9
u'=2ul(0¢, w=2we, =26,
i=1 i=1 i=1
9

4
=2 ¢, p'=2p/0e, (8)
i=1 i=1

where ¢' and ¢’ are biquadratic and bilinear basis functions
(Taylor-Hood elements) which satisfy the well-known
Babuska-Brezzi condition [7]. The spurious node-to-node os-
cillations appearing for finite Reynolds numbers are then
avoided. The usual Galerkin approach (orthogonality in the
basis function space) allows to replace the governing Eq. (6)
by the following continuity Ric, momentum Rf\l, energy Rjé
and solute R% residual equations:

R"sz V.-v'¢dV=0, (9a)
|4

: av' ov' diu
Rh:f {—+V’-Vv’+ﬁ—+—w'ex—PrV-T
vL ot ox dz

—Ra Pr(0' + wc')ez} $dV=0, (9b)

. a0’ a0 ;
Ri=| | —+V VO +ia——-w'=V*¢ |¢dV=0,
E ot J
% X

(9¢)
; dc’ . _dc’
Rs=f |:_+V’-VC +iu—-—-w'
vL odt ox
—Le(V3¢' - V%V)} $dv=0, (9d)

where T=—p'I/Pr+[Vv'+(Vv")T].

At the top and bottom walls, the essential boundary con-
ditions (7a) and (7b) are applied for the streamwise and ver-
tical velocities and for the temperature, while the natural
boundary conditions (7¢) are used for the concentration. We
also impose periodic boundary conditions in the x direction.

The residuals Ric, R;,,, RiE, and Rg are evaluated numeri-
cally using nine-point Gaussian integration. The residual
equation (9), which correspond to a system of nonlinear al-
gebraic equations, are solved with the Newton-Raphson it-
erative method,
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JR
q(n+1) — q(n) _ J_IR((]<”)), J = % (10)

Here, qT=[uj,wi,0],ci.py, " 1y, Wy, Oy.cy-pyl is  the
vector of the unknowns and J is the Jacobian matrix of the
residuals R with respect to the nodal unknowns q. At each
Newton-Raphson step, a system of linear equations charac-
terized by a banded matrix is obtained, which is solved by
the ILUTC-GMRES iterative method [8]. For the stationary
problem, the Newton-Raphson method may be used directly
to converge to a stationary state of the flow system, while for
the transient problem, the Crank-Nicolson scheme is used for
time integration and the Newton-Raphson method is used at
each time step. Numerical accuracy has been tested by dou-
bling the number of finite elements in both x and z directions
and by reducing the time step by half. All the results pre-
sented in this study have been checked to remain visually
indistinguishable from those obtained with a higher discreti-
zation, and are thus considered mesh and time step indepen-
dent.

IV. RESULTS OF THE SPATIOTEMPORAL NUMERICAL
SIMULATIONS

In order to validate the finite element approach presented
in the previous section, preliminary numerical simulations of
two-dimensional PRB flows of binary fluids with Soret effect
have been carried out by two of the present authors [9]. The
calculations were performed in a periodic region of length
L=2 for Pr=10, Le=0.01, #=0.1, Re=0.1 and several values
of the Rayleigh number. They were initiated by a tempera-
ture perturbation applied at an arbitrary position, as done by
Biichel and Liicke [4]. The results for Ra=2000 show that
only the mode with the wave number k.= is initially am-
plified whereas all the other modes are damped. There is then
a continuous growth of the k.= mode until nonlinear ef-
fects become important. After a nonlinear transition, the flow
finally evolves into a periodic right traveling wave. Similar
results are obtained for Ra=1000, 1500, and 2500. The com-
puted linear temporal growth rates and phase velocities are in
very good agreement with those obtained from the linear
stability equations [6], indicating that the mixed finite ele-
ment code is well adapted for PRB flow simulations. In the
following, we will use this code to study the convective/
absolute stability properties of the PRB flows and we will
compare our results with those already obtained by a linear
stability approach [6]. Note that the computations will be
performed for fixed values of the Prandtl and Lewis numbers
(Pr=10, Le=0.01).

Following the method used by Delbende and Chomaz
[10] a divergence-free velocity disturbance v'(x,z,t=0) is
used as the initial velocity field. This disturbance is defined
by

(x- )Co)2

_ 2
”’=—(Z—ZO)CXP[_< Y. +(22;20) >:|’ (11a)
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o2 IRy Ry
w’=;;(x—x0)exp{—<(x20)%0) +(Z20Z_§) )} (11b)

It corresponds to a Gaussian pulselike perturbation which is
located at (x=x,, z=2z,) and has a typical extent o, along the
x direction and o, along the z direction. The length scales o,
and o, must a priori be taken as small as possible. Never-
theless, in order to keep enough spectral information with all
physically relevant wave numbers, we choose o,=0,=0.1.
This initial perturbation is in fact a small vorticity spot.

This perturbation is expected to initiate a wave packet
which will be convected inside the cavity. The numerical
simulation will follow the evolution of this wave packet and
determine its characteristics. The evolution of the wave
packet at the linear stage can also be obtained by linear sta-
bility analysis using the absolute/convective instability
theory. Let us recall some basic ideas. First, a wave packet
will be amplified only if the system is unstable, i.e., in a state
beyond the critical curve for the onset of instabilities. Then,
if the amplifying wave packet is convected away from its
initial position, the system is said to be convectively un-
stable. If, otherwise, the amplification can be observed lo-
cally, the system is said to be absolutely unstable. The AI/CI
boundary curve indicates the boundary between these two
regimes. Finally, for an amplifying wave packet, more preci-
sions on its spatial evolution can be obtained by the AI/CI
theory through the calculation of the propagation speeds of
its left and right fronts [see Eqs. (12)—(14) of Ref. [6] pre-
senting the calculation of the absolute growth rate in a mov-
ing frame].

A. Positive separation factors (> 0)
1. ¥=0.01

Let us first recall the results obtained by linear stability
analysis for ¢#=0.01. These results (extracted from Fig. 16 of
Ref. [6]) are shown in Fig. 2 where are plotted together in the
Re-Ra plane the critical curve for the onset of the instabili-
ties (stable/unstable or S/U boundary curve) and the bound-
ary curve between absolute and convective instabilities
(AI/CI boundary curve). We can see that the Re-Ra plane is
divided into three regions: the stable region, the convectively
unstable region and the absolutely unstable region. There is
generally a convectively unstable region between the stable
and absolutely unstable regions, but a direct transition from
the stable region to the absolutely unstable region is some-
times possible, as is the case for Re=0 in the situation at ¢
=0.01. Different numerical simulations will be performed for
#=0.01 at selected values of the parameters Re and Ra. The
corresponding points in the Re-Ra plane are indicated by
crosses (X) in Fig. 2 and labeled from 1 to 4. The precise
localization of these points is given in Table I, together with
information obtained by linear stability analysis such as the
stability properties and the propagation speeds of the left and
right fronts of the amplifying wave packets. For each simu-
lation, a periodic cavity of length L=24 or L=32 has been
simulated and the initial perturbation is located at (xo=7,
Z()=0.5).
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FIG. 2. Critical curve (stable/unstable transition, thick curve)
and AT/CI boundary curve (thin curve) in the Re-Ra plane for PRB
flows with Soret effect and #=0.01. Crosses (X ) indicate param-
eter values at which numerical simulations are performed (see Table
I and Fig. 3).

The spatiotemporal evolution of the perturbation is illus-
trated in Fig. 3 for the four selected cases. In each case, the
vertical component of the velocity perturbation along the
horizontal center line of the channel (shown as w’ profiles
along x) is plotted at regularly spaced times in an x-¢ graph.
In all cases, the w' signal appears very quickly as a periodic
signal of wavelength close to 2, indicating that the mode
with a wave number close to k.= has been initially ampli-
fied whereas the other modes have been damped, in agree-
ment with the critical wave numbers found in the temporal
stability analysis. The results obtained in the different cases
are now briefly described.

(i) Case 1: for this case [Fig. 3(a)], we see that the pulse-
like perturbations spread convectively downstream. The se-
lected k.= mode is continuously amplified, but quite
slowly. The flow for this case is then convectively unstable,
in good agreement with the results obtained by the linear
AI/CI theory and shown in Fig. 2 and Table I.

TABLE 1. Characteristics of the different cases ([indicated by
crosses (X) in Fig. 2] for which a numerical simulation is per-
formed for #=0.01 (Fig. 3): values of the Reynolds and Rayleigh
numbers; stability properties [stable (S), convectively unstable (CI),
absolutely unstable (AI)]; propagation speeds Vi(V,) of the left
(right) fronts of the amplifying wave packets obtained from the
linear AI/CI theory.

Case 1 2 3 4
Re 0.4 0.2 0.7 1.0
Ra 1600 1800 1600 1800
S/CI/AT CI Al S CI
\ 3.433 -2.333 / 9.499
\% 7.673 7.678 / 17.082

r
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(ii) Case 2: in this case [Fig. 3(b)], the perturbation grows
much faster and locally, i.e., around its initial position. This
is characteristic of an absolute instability, which also agrees
with the prediction of the AI/CI theory.

(iii) Case 3: for this case which is below the critical curve,
the perturbation is convected downstream with a decreasing
amplitude, i.e., even the initially amplified k.= mode is
finally damped [Fig. 3(c)]. The flow in this case is then
clearly stable.

(iv) Case 4: in this case [Fig. 3(d)], the perturbations
spread convectively downstream as in case | indicating that
the flows are convectively unstable. The perturbations, how-
ever, have larger growth rates and larger downstream veloci-
ties.

Note finally that, for each unstable case, the spatiotempo-
ral rays, x/t=V, based on the propagation speeds of the left
and right wave packet fronts obtained by the linear AI/CI
theory, are in very good agreement with the numerically ob-
tained wave packet evolution (Fig. 3).

2. ¢=0.1

According to the linear theory, for large enough positive
separation factors (such as =0.1), there exists a Reynolds
number range where there is a transition between two differ-
ent critical modes [6]. The neutral curves (Rayleigh number
against wave number) in this Re range are plotted in Fig. 4
for =0.1, reproducing Fig. 4(a) of Ref. [6]. We can see
clearly that when Re=1.5 there is only one minimum at k,
=2.88 on the neutral curve. When increasing the Reynolds
number, another local minimum first appears at a larger wave
number (k,=3.97 for Re=1.54), and then for Re= 1.6, a third
local minimum appears at an intermediate wave number (k,
=3.02 for Re=1.6). For Re beyond 1.6, three local minima
then exist on each neutral curve. The evolution of these
minima with Re leads to a change of critical mode at Re
=1.64 (between the low wave number minimum and the in-
termediate wave number minimum), inducing a discontinuity
in the critical wave number curve and the nonsmoothness of
the critical Rayleigh number curve. These phenomena were
first mentioned in our linear stability analysis paper [6]. To
better understand the dynamics of the wave packets in this
Re range, we will consider two cases, the first one (Re
=1.56) where the neutral curve has two minima and the sec-
ond one (Re=1.64) where the neutral curve has three
minima, and choose in each case a value of Ra slightly above
the critical curve, respectively Ra=1400 and Ra=1500.

For Re=1.56 and Ra=1400 (values shown, respectively,
by a heavy solid curve and a dashed line in Fig. 4), we first
present the temporal growth rates (w;) as a function of the
real wave number (k,) (result obtained by linear temporal
stability analysis) in Fig. 5(a) and the local growth rates (w?)
as a function of the observer velocity V=x/t (result obtained
by the linear AI/CT analysis) in Fig. 5(b). We see that there
exist two maximum temporal growth rates w; ,,« at different
wave numbers k,~2.43 and k,=~4.27, and two maximum
local growth rates o}, corresponding to different moving
frame velocities V=20.64 and V=24.52 and belonging to
different unstable branches. The branch with larger maxi-
mum growth rate and smaller wave number will be referred
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FIG. 3. Spatiotemporal evolutions generated by an initial pulselike velocity perturbation located at (xo=7, zop=0.5) in a PRB flow with
Soret effect for four cases corresponding to selected (Re, Ra) pairs (see Table I and Fig. 2) and #=0.01: (a) Case 1; (b) Case 2; (c) Case 3;
(d) Case 4. The vertical component of the velocity perturbation w’ along the center line of the channel is plotted at regularly spaced times.
In each case, the x range plotted corresponds to the size of the periodic cavity. For each amplifying wave packet, the spatiotemporal ray
labeled Vi(V,) is based on the propagation speed of its left (right) front obtained by the linear AI/CI theory and given in Table 1.

to as “branch I,”” and the other branch with smaller maximum
growth rate and larger wave number as “branch II” [Fig.
5(a)]. For these two branches, the two wave front velocities
can also be obtained [Fig. 5(b)]: they are V,=20.077 and
V,=21.393 for branch I and V;=24.306 and V,=24.741 for
branch I, V; concerning the left front and V, the right front.
All this indicates that branch II has a faster downstream ve-
locity than branch I, whereas branch I has a larger unstable
region than branch II.

A numerical simulation has been performed for this case
(Re=1.56, Ra=1400) inside a periodic cavity of length L
=40 and with an initial perturbation located at (xo=7, zg
=0.5). The spatiotemporal evolution of the w’ profile along
the center line of the channel is shown in Fig. 6. Initially, the
two branches overlap and up to #=0.8 only one wave packet
can be seen [Fig. 6(a)]. For larger times (1 <t<3) the two
branches with different wavelengths can be gradually distin-

guished [Figs. 6(b) and 6(c)]. Finally, for t=3.5 [Fig. 6(d)],
the main parts of the two unstable branches are clearly sepa-
rated. Note that a damping effect can be observed in the
transition process from the initial wave packet to the two
wave packets corresponding to branch I and branch II. This
damping effect, which also takes place in the intermediate
zone between the two wave packets, is a consequence of the
negative temporal growth rates found for 3 <k,<3.8 [see
Fig. 5(a)]. The whole disturbed region can be bounded by
two rays in the x-f plane, one at the left front of branch I and
the other at the right front of branch II. A good fit is obtained
by choosing the front velocities obtained by the AI/CI theory
(V,=20.077 for branch I and V,=24.741 for branch II),
which indicates a very good agreement with the results ob-
tained by spatiotemporal instability analysis [Fig. 5(b)]. The
spatiotemporal patterns (temperature perturbation contours)
at r=1.8 and r=3.5 are finally presented in Fig. 7. We clearly
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FIG. 4. Neutral curves (Rayleigh number Ra against real wave
number k,) for different Reynolds numbers, Re=1.5+nrx0.02 for
n=0 to 10, and =0.1. The arrow indicates increasing Re. The
heavy solid curve corresponds to Re=1.56 and the dashed line to
Ra=1400.

see the separation of the two wave packets corresponding to
branch I and branch II, their different spatial extents and
different wavelengths. Aside from these differences, note that
the temperature patterns look very similar for the two
branches.

A similar study is now performed for Re=1.64 and Ra
=1500. The temporal growth rates (w;) and the local growth
rates (w]) are given for this case in Fig. 8. From the two
subfigures, it can be seen that there exist three maximum

0.1
o Branch |
0.05 |-
- Branch i
g of
-0.05 -
-0.1
1 2 3 4 5
(@) k,
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growth rates, two positive (unstable modes) and one negative
(stable mode). The spatiotemporal approach [Fig. 8(b)] indi-
cates that the three maximum growth rates belong to three
different branches. Branch I and branch II have already been
defined in the previous case (Re=1.56, Ra=1400). The new
branch which corresponds to intermediate wave numbers is
denoted by “branch III.” We see that branch III has the larg-
est growth rate, but also that its local growth rate curve has a
large extent and completely covers the local growth rate
curves of branch I and branch II. It can then be expected that
branch III will dominate the whole spatiotemporal evolution
in this case.

The numerical simulation performed in this case (Re
=1.64, Ra=1500) has the same characteristics as in the pre-
vious case (L=40, xo=7, zo=0.5). The spatiotemporal evolu-
tion of the w’ profile along the center line of the channel is
shown in Fig. 9, together with the spatiotemporal rays corre-
sponding to the left and right front velocities obtained by the
AI/CI theory for branch III. As expected, a single wave
packet is obtained during the spatiotemporal evolution.
Moreover, the spatiotemporal rays associated with the left
and right front velocities of branch III well describe the
spreading of the unstable wave packet. All this confirms the
dominant influence of branch III.

In the two previous spatiotemporal simulations, we found
that the time evolution of the left and right boundaries of the
global wave packets can be well estimated by front velocities
obtained by the spatiotemporal instability analysis. In fact, at
the boundaries of the unstable wave packets, the disturbance
amplitudes are small, which explains that the linear theory
can predict the spreading velocity of these boundaries. In the
central region of the wave packet, however, the wavelengths
and temporal growth rates may deviate from the values ob-
tained by the linear theory. For instance, for the first case
(Re=1.56, Ra=1400), we know from our linear stability

0.1
i Branch |
0.05
B Branch Il
. - 20.077 21.393 24.306A 24.741
3 0
-0.05 -
_0.17\\\I\\\\I\\\\I\\\\I\\\\I\\\\\\\\
19 20 21 22 23 24 25 26
(b) 1%

FIG. 5. (a) Temporal growth rates w; as a function of the real wave number k, (result obtained by temporal stability analysis) and (b) local
growth rates o) as a function of the observer velocity V=x/t (result obtained by spatiotemporal stability analysis) for the unstable branches
I and II of the PRB flow with Soret effect for Re=1.56, Ra=1400, and =0.1. In (b), the values of the left and right wave front velocities

are given for each branch.
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FIG. 6. Spatiotemporal evolution generated by an initial pulselike velocity perturbation located at (xy=7, zy=0.5) in a PRB flow with
Soret effect for Re=1.56, Ra=1400, and =0.1. The vertical component of the velocity perturbation w' along the center line of the channel
is plotted at regularly spaced times (Ar=0.1): (a) 1=0.1-0.8; (b) t=1.1-1.8; (c) r=2.1-2.8; (d) t=3.1-3.8.

analysis that the wavelength of the unstable wave packet
corresponding to the maximum growth rate for branch I
should be A,,=2.58 [Fig. 5(a)]; but the wavelength found for
branch I from the simulation results at z=3.5, near the maxi-

mum amplitude of the signal, is smaller, about 2.3 [see the
patterns in Fig. 7(b)]. For branch II which has a smaller
maximum growth rate, it is found that the theoretical and
simulated values for the spatial wavelength at maximum

(b)

X—72

FIG. 7. Spatiotemporal patterns (temperature perturbation contours) obtained at (a) r=1.8 and (b) #=3.5 in a perturbed PRB flow with
Soret effect for Re=1.56, Ra=1400, and =0.1 (same case as in Fig. 6).
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FIG. 8. (a) Temporal growth rates w; as a function of the real wave number k, (result obtained by temporal stability analysis) and (b) local
growth rates w! as a function of the observer velocity V=x/t (result obtained by spatiotemporal stability analysis) for the near-unstable
branches 1, II, and III of the PRB flow with Soret effect for Re=1.64, Ra=1500, and =0.1. In (b), the values of the left and right wave front

velocities are given for the dominant branch III.

temporal growth rate are 1.47 and 1.59, respectively. The
difference is smaller than for branch I, but the smaller value
is now the theoretical value. In fact, we can note that the
computed values are between the two theoretical values.
These differences between the theoretical and computed val-
ues could then be due to the fact that the two waves in the
calculations are not yet separate and that there is an interac-
tion between them. We can also argue that the wave packets
may be changed by weak nonlinear effects because the se-
lected situation is somewhat above the critical curve.
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B. Negative separation factors (¢<<0)

For negative separation factors, it is already known [2]
that the throughflow lifts the Hopf symmetry degeneracy of
left (upstream) and right (downstream) traveling waves
(TW), generating two TW branches with different frequen-
cies, bifurcation thresholds, and structural properties. The
modes on these two branches will be named upstream
(downstream) modes with reference to the negative (posi-
tive) value of the pulsation characterizing the branch in the
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FIG. 9. Spatiotemporal evolution generated by an initial pulselike velocity perturbation located at (xy=7, z=0.5) in a PRB flow with
Soret effect for Re=1.64, Ra=1500, and =0.1. The vertical component of the velocity perturbation w’ along the center line of the channel
is plotted at regularly spaced times (A7=0.1): (a) r/=0.1-0.8; (b) t=1.1-1.8. The amplifying wave packet is bordered by the spatiotemporal
rays associated with the left and right front velocities of branch III and obtained by the linear AI/CI theory.
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FIG. 10. Critical curves (stable/unstable transitions, thick
curves) and AI/CI boundary curves (thin curves) in the Re-Ra plane
for PRB flows with Soret effect and ¢y=—0.1. The squares ([J) refer
to the upstream modes, the triangles (A) refer to the downstream
modes, and the solid thick curve gives the true minimum critical
Rayleigh number. Crosses (X ) indicate parameter values at which
numerical simulations are performed (see Table II and Fig. 11).

limit Re— 0, and the associated traveling waves will be de-
noted by TWU (TWD).

The AI/CI boundary curves and critical curves for =
—0.1 are plotted in the Re-Ra plane in Fig. 10. In this figure,
the squares () refer to the upstream modes, the triangles
(/) refer to the downstream modes, the thin curves are the
AI/CI boundary curves, the thick curves are the critical
curves, and the solid thick curve gives the true minimum
critical Rayleigh number. When increasing Re from zero, the
critical Rayleigh number is first determined by the upstream
mode, then the downstream mode becomes the critical mode
in an intermediate range of Re, and finally, for larger Re, the
upstream mode is again the critical mode. There also exists a
contact point between the critical curve and the AI/CI bound-
ary curve, at which the fluid system is directly changed from
stable to absolutely unstable without crossing the convec-
tively unstable region. According to these features, we select
six representative situations, corresponding to (Re, Ra) pairs

PHYSICAL REVIEW E 80, 026312 (2009)

denoted by crosses (X) in Fig. 10 and labeled from a to f.
More details on these situations are given in Table II. For
these six cases, a numerical simulation will be performed.

The spatiotemporal evolution of the perturbation [initially
imposed at (xq, z)] is illustrated in Fig. 11 for the six se-
lected cases through the usual w' profiles. For cases a, b, and
¢, a periodic cavity of length L=24 has been simulated,
whereas for cases d, e, and f, L=32. The results obtained in
the different cases are now described.

(i) Case a (xy=10, zy=0.5): in this case [Fig. 11(a)], the
left and right wave packets, respectively, spread upstream
and downstream, i.e., the front velocities verify W< Vf<0
and V/>V¢>0. The flow is then convectively unstable,
which agrees with the result found by linear spatiotemporal
stability analysis.

(ii) Case b (xp=7, z9=0.5): from Fig. 11(b), it can be seen
that the left wave packet of the upstream mode grows locally
around its initial position, i.e., V/<<0 and V>0, which in-
dicates an absolute instability, while the wave packet of the
downstream mode spreads downstream, with larger front ve-
locities than for case a, which indicates a convective insta-
bility. All this agrees with the linear stability results and con-
firms that in this case the whole flow system is absolutely
unstable.

(iii) Case ¢ (xp=4, zo=0.5): in this case [Fig. 11(c)], the
left and right wave packets both spread downstream with
different front velocities (V¢> V> V"> V*>0). So the flow
is convectively unstable as for case a, but the upstream mode
now spreads downstream. This phenomenon is in agreement
with the linear spatiotemporal stability analysis, and con-
firms that the point c¢ is within the convectively unstable
parameter region as shown in Fig. 10.

(iv) Case d (xy=17, z9=0.5): from Fig. 11(d), it can be seen
that the wave packet of the upstream mode grows locally
around its initial position similarly to the case b (V} <0 and
Vi>0). For the downstream mode, however, the wave
packet spreads downstream but with a damped amplitude.
Thus, the downstream mode is stable, but due to the absolute
instability of the upstream mode, the flow system is abso-
lutely unstable. This also agrees with the spatiotemporal sta-
bility analysis, as shown in Table II and Fig. 10 for point d.

(v) Cases e and f (xy=4, zo=0.5). For these two cases
[Figs. 11(e) and 11(f)], both left and right wave packets
spread downstream. But for the case e, the wave packet for
the upstream mode is damped whereas for the case f, it is the
wave packet for the downstream mode which is damped.

TABLE II. Characteristics of the different cases [indicated by crosses (X) in Fig. 10] for which a
numerical simulation is performed for #=-0.1 (Fig. 11): values of the Reynolds and Rayleigh numbers;
stability properties [stable (S), convectively unstable (CI), absolutely unstable (AI)] with respect to the
traveling waves of the upstream mode (TWU), the downstream mode (TWD), both modes together (all TW).

Case a b c d e f
Re 0.05 0.15 0.25 0.15 0.45 1.0
Ra 1950 1950 1950 1910 2000 2160
S/CI/AI (TWU) CI Al CI Al S CI
S/CI/AI (TWD) CI CI CI S CI S
S/CI/AI (all TW) CI Al CI Al CI CI
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FIG. 11. Spatiotemporal evolutions generated by an initial pulselike velocity perturbation located at (xg, zo=0.5) in a PRB flow with Soret
effect for six cases corresponding to selected (Re, Ra) pairs (see Table II and Fig. 10) and ¢=-0.1: (a) Case a (x,=10); (b) Case b (x,
=7); (c) Case ¢ (xg=4); (d) Case d (xy=7); (e) Case e (xg=4); (f) Case f (xy=4). The vertical component of the velocity perturbation w’
along the center line of the channel is plotted at regularly spaced times. In each case, the x range plotted corresponds to the size of the
periodic cavity. For each amplifying wave packet, the spatiotemporal ray labeled V,(V,) is based on the propagation speed of its left (right)

front obtained by the linear AI/CI theory.

From the spatiotemporal point of view, the flow systems for
these two cases are convectively unstable. These phenomena
are also in good agreement with what was found by the lin-
ear AI/CI stability analysis (Table II).

The simulations performed for the six different cases suc-
cessfully compare with the linear spatiotemporal stability re-
sults. In particular, the spatiotemporal rays, x/¢t=V, based on
the propagation speeds of the left and right wave packet
fronts obtained by the AI/CI theory, are still in very good
agreement with the numerically obtained wave packet evo-
lutions. It is also found that for all these cases the wave
packets for the downstream and upstream modes, created by
the initial pulselike disturbance, eventually separate.

We may wonder whether it is possible to find a parameter
region where the unstable wave packets of the downstream
and upstream modes would not be separated. For that, the
velocities of the unstable wave packets for these two modes
must overlap. As we know, the AI/CI boundary curves shown
in Fig. 12 correspond to the zero value of the absolute
growth rate, i.e., the local growth rate for an observer veloc-
ity V=0. Due to the symmetry of the flow system with re-
spect to Re=0, the AI/CI boundary curves for the down-
stream and upstream modes intersect at Re=0. If we
generalize the idea of the absolute growth rate, we can plot
generalized AI/CI boundary curves for the downstream and
upstream modes, corresponding to the zero value of the local
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FIG. 12. Critical curves and generalized AI/CI boundary curves

for different observer
for PRB flows with

velocities (V=0 and V=3) in the Re-Ra plane
Soret effect and =-0.1. The long-dashed

curves refer to the upstream modes and the short-dashed curves
refer to the downstream modes. Solid circles indicate intersection
points of the generalized AI/CI boundary curves for the downstream

and upstream modes

for different observer velocities V, and the

associated integers indicate the corresponding values of V.
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FIG. 13. Spatiotemporal patterns (concentration perturbation contours) obtained at different times (r=nX0.2 for n=1 to 10) in a
perturbed PRB flow with Soret effect for Re=0.15, Ra=1950, and =-0.1. In this case, the wave packets for the downstream and upstream
modes eventually separate. Concerning the contours, the first solid line indicates a zero value, the other solid lines correspond to positive

values and the dashed lines correspond to negative values.

growth rate for nonzero observer velocities (V#0). For ex-
ample, the generalized AI/CI boundary curves for V=3 are
plotted in Fig. 12. From this figure, it can be seen that the
generalized AI/CI boundary curve for the downstream mode
has a contact point with the critical curve of the downstream
mode, and similarly for the upstream mode. (For V=0, it was
only the case for the upstream mode.) The two generalized
AI/CI boundary curves intersect at a point indicated by a dot
and labeled by “3,” the value of V. Above this intersection
point, there exists a parameter region which is confined by
the two curves, where the unstable wave packets for the
downstream and upstream modes would spread with propa-
gation velocities in the same range around V=3. Further-
more, by changing the observer velocity, different pairs of
generalized AI/CI boundary curves for the downstream and
upstream modes can be obtained, determining a different in-
tersection point. Thus a continuous line of intersection points
can be obtained by a continuous change in the observer ve-
locity. For the sake of simplicity, six intersection points cor-
responding to observer velocities equal to V=1,2,...,6 have
been calculated. These points are plotted in Fig. 12 and con-
nected by a solid line. So, for parameters above this solid
line, the unstable wave packets for the downstream and up-

stream modes will always overlap and no separation between
them will be observed. Note also that the evolution of this
overlap boundary curve with Re looks quite similar to the
evolution of the critical curve for the downstream mode. The
difference in Rayleigh number between the two curves is
about 150 to 170. So, roughly speaking, when the tempera-
ture difference between the lower and upper plates is about
9% higher than the critical temperature difference, the sepa-
ration of the unstable wave packets for the downstream and
upstream modes cannot be observed.

To illustrate this, two simulations below and above the
overlap boundary curve have been performed. The spa-
tiotemporal evolutions of the concentration perturbation con-
tours are shown in Figs. 13 and 14. The first case, which
corresponds to the point b in Fig. 10 (Re=0.15, Ra=1950), is
in the absolute instability region but below the overlap
boundary curve, while the second case for Re=0.15 and
Ra=2100 is above the overlap boundary curve. For the first
case, Fig. 13 exhibits the full separation process of the wave
packets for the downstream and upstream modes: after an
initial amplification of the pulselike disturbance (from =0 to
t=0.4), the two wave packets which evolve with different
propagation velocities [see the front velocities in Fig. 11(b)]
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FIG. 14. Spatiotemporal patterns (concentration perturbation contours) obtained at different times (r=nX0.2 for n=1 to 10) in a
perturbed PRB flow with Soret effect for Re=0.15, Ra=2100, and =-0.1. In this case, the wave packets for the downstream and upstream
modes never completely separate. Concerning the contours, the first solid line indicates a zero value, the other solid lines correspond to

positive values and the dashed lines correspond to negative values.

begin to separate; at r=1.8, there exists a nearly undisturbed
region between the two wave packets indicating that an al-
most full separation is already obtained. In contrast, for the
second case, Fig. 14 shows that, although the two wave
packets seem to separate, there always exists a perturbed
region between them, which corresponds to an overlapping
of the two wave packets. The two wave packets cannot then
depart fully in this case, and the characterization of the per-
turbations in the overlapping region must take into account
both contributions of the downstream and upstream modes.
The results obtained by these simulations are in agreement
with the indications given by the overlap boundary curve
deduced from the linear AI/CI theory.

V. CONCLUSION

The spatiotemporal evolution of Poiseuille-Rayleigh-
Bénard flows in binary fluids with Soret effect has been in-
vestigated in this paper by nonlinear numerical simulations
initiated by pulselike disturbances. The convective patterns
corresponding to rolls with transverse axes are described in
our two-dimensional simulations. Through selected simula-

tions, specific behaviors revealed by the linear spatiotempo-
ral stability analysis have been illustrated and analyzed. For
positive separation factors, there exists a parameter zone in
which two and even three modes with different wave num-
bers can coexist. The simulation shows a first case where the
pulselike disturbance generates two wave packets which
eventually separate, and a second case where one of the
wave packets completely dominates the two others and is
responsible alone for the simulated spatiotemporal evolution.
For negative separation factors, different cases where the two
so-called downstream and upstream modes will generate
wave packets either stable, convectively unstable or abso-
lutely unstable have been simulated. It has also been shown
that there exists a boundary curve in the (Re, Ra) parameter
region beyond which the wave packets of these two modes
will never completely separate.

The simulations are in very good agreement with the re-
sults obtained by linear spatiotemporal stability analysis:
very good comparisons are in particular obtained for the
characteristics of the wave fronts and the transitions between
absolute and convective instabilities when changing the pa-
rameters. It should be noticed that the initial perturbation is
small enough to provide an initial growth according to a
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linear mechanism. Thus the simulations can be used to di-
rectly identify the transitions between absolute and convec-
tive instabilities without the help of the linear spatiotemporal
stability theory, though they need much longer computing
times. Of course, the simulations are not necessarily confined
to small initial conditions, and we have also used much
larger initial pulselike conditions to identify the nonlinear
AI/CI properties of the PRB flows (the simulated results are
not presented in this paper). It is found that the nonlinear
AI/CI characteristics obtained by using an initial amplitude
which is thousands of times larger than that used in this
paper are the same as those obtained by the linear stability
theory. In other words, the fronts are linearly selected and the

PHYSICAL REVIEW E 80, 026312 (2009)

nonlinear effect is only confined to the intermediate region of
the wave packet.
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